
International Journal of Computer Trends and Technology Volume 72 Issue 10, 86-93, October 2024

ISSN: 2231–2803 / https://doi.org/10.14445/22312803/IJCTT-V72I10P114 © 2024 Seventh Sense Research Group®

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Original Article

Overcoming Security Obstacles in Serverless Function-

as-a-Service (FaaS) for Healthcare Insurance

Sanjeev Kumar

Independent researcher, SME in Cloud Engineering, Georgia, USA.

 Corresponding Author : sanjeevkumar.sk@ieee.org

Received: 30 August 2024 Revised: 03 October 2024 Accepted: 18 October 2024 Published: 30 October 2024

Abstract - In recent years, serverless computing, particularly FaaS, has gained much popularity as a method by which

developers can develop and publish their code without having to manage any underlying infrastructure. With these conveniences

and scalability opportunities come a particular set of security challenges: function-level vulnerabilities, insecure APIs, data

leakage risks, improper resource permissions, and bad monitoring practices. Furthermore, the stateless nature of FaaS

combined with shared environments in the cloud increases the number of attack vectors, which include injection attacks, DoS,

and privilege escalation. This paper searches for general security challenges of serverless applications, especially FaaS, and

provides a detailed review of best practices available to mitigate the risks. The studies are analyzed based on case study data,

and the findings from security testing tools, such as OWASP ZAP and Burp Suite, which have identified the vulnerabilities of

the application and measured the effectiveness of various security practices, are considered. These tools are applied in a

simulated FaaS environment, and the findings are drawn from the attack frequency impact of security measures on system

performance, so demonstrating how best practices such as least privilege access, API security, and encryption can really make

a difference in security outcomes. Risks will be reduced, and compliance with modern security standards will be upheld by

adopting a holistic, security-first approach to the design of serverless applications. This paper provides an overall roadmap for

building secure and efficient FaaS with real-world examples and empirical evidence.

Keywords - Serverless Security, Function-as-a-Service (FaaS), Cloud Security, API Security, Secure architecture.

1. Introduction
The cloud and, indeed, serverless architecture has

significantly changed the landscape of software development

and deployment. Recent trends reflect the fast growth of

serverless architectures. The Function-as-a-Service (FaaS)

model is one of the bold features of serverless computing,

which allows developers to focus only on coding and not care

about the underlying infrastructure. This shift has been

instrumental in creating highly scalable, cost-effective, and

agile applications [1]. FaaS allows applications to scale

automatically in response to demand while charging only for

the actual usage of compute time, making it extremely

appealing to businesses seeking to minimize overhead costs

and reduce operational complexity. However, though it has

massive advantages, FaaS brings into the equation equally

massive security risks. In a serverless environment, the attack

surface is inherently more different than in traditional

architecture [2]. It means that with a lack of control by

developers over the infrastructure, application functions end

up being insecure and data integrity compromised. Some of

these include insecure APIs, function-level vulnerable points,

data leaks and improper permissions, among others.

Serverless computing comprises an attack surface that is

segmented into smaller, more modular components than in

other traditional systems, thus requiring different security

approaches. Since serverless platforms are, by nature, multi-

tenanted shared resources in a cloud environment, this exposes

applications to a myriad of threats [3]. For one, it makes

privilege escalation and DoS attacks especially easy when

implementing a serverless model. Statelessness is another

product of serverless functions, which causes problems related

to keeping session security and isolating runtime for functions.

Most serverless applications have third-party libraries and

APIs that open up the threat of vulnerabilities in third-party

code [4].

This paper addresses the critical issues using an all-

inclusive analysis of security threats in FaaS-based serverless

applications. The paper will outline major security threats,

vulnerabilities, and attack vectors and propound best practices

to mitigate them. In doing so, it discusses how developers can

adopt security-first design principles to make their

applications resilient to modern security threats. In addition,

an architectural model for safe serverless deployment will be

proposed, and related security analyses will outline how
specific protection measurements may reduce the

vulnerabilities in FaaS. Laying a foundation based on both

theoretical and practical perspectives of serverless security,

this paper aims to contribute knowledge to the sea of growing

http://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Sanjeev Kumar / IJCTT, 72(10), 86-93, 2024

87

research surrounding the development of serverless

applications. This paper will elaborate upon additional

security practices brought about by the new information

security practices: encryption, least-privilege access, and

runtime monitoring under real-world scenarios. It should also

put emphasis on maintaining a security posture on proactive

terms by continuous scanning and monitoring for

vulnerabilities. Serverless computing will only continue to

proliferate, and it needs to address these new challenges head-

on. Security practices should be employed in the development

stage of organizations' serverless applications but should also

spread throughout their lifecycles. This paper will guide

developers, security professionals, and businesses on how to

adopt serverless technology easily while at no point

compromising on security. This research will prove handy in

the mitigation of risks associated with serverless applications,

providing all its findings with complete analysis and practical

recommendations on the same and, therefore, help businesses

understand how to properly benefit from FaaS while keeping

up a good level of security posture [5].

2. Review of Literature
In the past two years, the literature on serverless

computing has grown, and many studies have underlined the

benefits, such as reduced costs, scalability, and ease of

deployment. Meanwhile, much of the literature has

underlined security vulnerabilities that are specific to these

serverless models, particularly within the Function-as-a-

Service environment [6]. Thus, the onus now appears to go

down the layers to the application, whose security threats the

developers will have to address directly in the function code

at that layer. Some critical studies enumerate for themselves

some of the issues when it comes to securing APIs- the main

entry or access points into the system for communication

between serverless functions [7]. APIs are critical entry points

because there is a likelihood of injection attacks and privilege

escalation occurring at that level. In addition, being stateless,

FaaS functions further complicate matters like session

persistence or protection of data, for example, because it will

be very hard to apply the usual secure aspects like server-side

authentication or authorization in a stateless way [8]. This is

another risk of serverless functions, by their own literature

outlining the risks of third-party libraries used within

serverless functions. Serverless applications are

fundamentally very modular; developers rely very much on

third-party libraries just to speed up development processes.

However, such use leaves the software at risk of misuse by

malicious actors because the libraries are not trusted. As a

result, supply chain security has become a recent point of

focus in research into serverless security. Another area that

existing literature addresses involves the shared responsibility

model between cloud service providers and users. Here, while

the provider guarantees securing the infrastructure, the user is

responsible for securing their applications. This model has led

to several security best practices, such as the principle of least

privilege; it also ensures minimal attack surface on serverless

functions [9]. Developers are encouraged to make minimum

permissions for functions to be able to perform their tasks

without the risk of privilege escalation. Several works have

been presented proposing techniques to enhance serverless

security monitoring. Serverless functions are ephemeral in

nature, making it pretty challenging to use classic approaches

of monitoring as serverless functions are spinning up and

shutting down based on demand. For this purpose, researchers

came up with techniques for continuous runtime monitoring

to detect and correct security vulnerabilities in real-time [10].

According to the literature, encryption also presents a very

significant aspect of serverless security. Developers need to

ensure in-transit and at-rest encryption for sensitive data,

especially when functions interact with any external data

sources or APIs. Integration of encryption in serverless

workflows ensures that in the event of a breach, such data will

remain secure. In brief, literature in the serverless domain

demands a multi-layered approach with function-level

vulnerability, API security, managing permissions and

practices for monitoring. Risks associated with serverless

computing evolve with its advancement; therefore, it is quite

important that developers and organizations know novel

threats and the mitigation techniques that come along with

this change.

3. Methodology
In this study, we take a mixed-methods approach that

discusses both the difficulties and best practices concerning

serverless applications regarding security and FaaS. We

divided our methodology into three main phases: literature

review, case study analysis, and testing using empirical

evidence. In the first phase, we performed an extensive

literature review of the existing work related to serverless

security, primarily drawing from academic papers, industry

reports, and other relevant whitepapers within the context

of security. This identifies the critical security issues

relating to serverless computing and, in particular, FaaS

architecture. We analyzed real-life case studies of serverless

applications in both enterprise and small- to medium-sized

business contexts in order to determine common

vulnerabilities. These include API misuse, function-level

privilege escalation, and misconfigured permissions. We

entered the empiric phase and set up a controlled

environment where we could experiment with serverless

architectures, particularly through FaaS models. Thus, in

the phases of security assessment, employing penetration

testing along with runtime monitoring, we checked on

known vulnerabilities such as injection attacks and

unauthorized access, as well as privilege escalation. Multi-

layered security approach, along with all best practices,

encryption, least privilege, and API gateways, was applied

to our application. We then assessed the impact of these

mitigation strategies against the security risks through the

measurement of attack vectors, performance impacts, and

overall resilience of the system. Quantitative measurements

from the performance tests were analyzed through

Sanjeev Kumar / IJCTT, 72(10), 86-93, 2024

88

statistical methods. At the same time, the qualitative views

from the case studies provided much-needed contextual

information about the security risks and the mitigation

strategies. The output of this approach will enable the reader

to understand how best practices are implemented to

strengthen serverless applications against modern types of

security threats.

Fig. 1 Simplified Cloud-Based system architecture with secure data processing

Cloud Environment

Auth Service Cloud Platform

Validated Verify Token

API Gateway

FaaS External Service

User Function User Device

User Interaction

API Request

Trigger Function

Execute Call External

Log Execution Log Calls

Security Module

(Encryption, Logs)

Data Storage

Read/Write Data

Audit Logs Encrypt/Decrypt

Sanjeev Kumar / IJCTT, 72(10), 86-93, 2024

89

In Figure 1, a User Device sends an API request to an API

Gateway, authenticated through Auth Service here. Once

authenticated, the API Gateway invokes a function in the FaaS

module, which is then processed by a User Function. This

operation can reach Data Storage to read or write data or

invoke an External Service. All data operations are secured

and logged through the Security Module, which encrypts,

decrypts, and logs all activity for audit logging. Both the FaaS

and the External Service log all activities through the Security
Module for monitoring and compliance purposes. The

architecture thus splits into two subgroups, User Interaction

and Cloud Environment, organizing the components for

clearer visualization of the process flow within the cloud

ecosystem.

4. Data Description
The data used within this study come from various

sources, such as public cloud providers, industry reports,

and security benchmarks that were provided by the Open

Web Application Security Project (OWASP) and the Cloud

Security Alliance (CSA). Most empirical data hinged on

vulnerabilities at the function levels in FaaS architecture,

such as injection attacks, improper access controls, and

privilege escalations. The case studies were based on actual

implementations of serverless architectures in small-to-

medium businesses and large enterprise organizations. Data

related to penetration testing were also collected using

security testing tools such as OWASP ZAP and Burp Suite

to understand possible vulnerabilities in deployed

serverless functions.

5. Results
Results from security testing of FaaS architectures

provided numerous points in gaining insight into the presence

of vulnerabilities and the effectiveness of implemented

security best practices. During the penetration testing, several

security vulnerabilities were detected during this phase,

especially in API security privilege escalation attacks at the

function level. Injection attacks represented a very common

case of attacking unsecured APIs, agreeing with the fact that

poor API management remains one of the greatest threats to

serverless applications. Attack Frequency Reduction Rate

〈AFRR) is:

AFRR = (
𝐹𝑏𝑒𝑓𝑜𝑟𝑒−𝐹𝑎𝑓𝑡𝑒𝑟

𝐹𝑏𝑒𝑓𝑜𝑟𝑒
) × 100 (1)

Where:

𝐹𝑏𝑒𝑓𝑜𝑟𝑒 = Frequency of attacks before security

implementation

𝐹𝑎𝑓𝑡𝑒𝑟 = Frequency of attacks after security implementation

(1) calculates the percentage reduction in attack frequency

after implementing security measures. System Latency

Increase (SLI) is given as:

SLI = (
𝐿𝑤𝑖𝑡ℎ−𝑠𝑒𝑐𝑢𝑟𝑖𝑡𝑦−𝐿𝑤𝑖𝑡ℎ𝑜𝑢𝑡−𝑠𝑒𝑐𝑢𝑟𝑖𝑡𝑦

𝐿𝑤𝑖𝑡ℎ𝑜𝑢𝑡−𝑠𝑒𝑐𝑢𝑟𝑖𝑡𝑦
) × 100 (2)

Where:

𝐿𝑤𝑖𝑡ℎ−𝑠𝑒𝑐𝑢𝑟𝑖𝑡𝑦 =Latency with security measures (ms)

𝐿𝑤𝑖𝑡ℎ𝑜𝑢𝑡−𝑠𝑒𝑐𝑢𝑟𝑖𝑡𝑦 = Latency without security measures (ms)

(2) calculates the percentage increase in system latency due

to the introduction of security measures. Overall Risk Score

〈ORS) is:

ORS = ∑𝑖=1 𝐼𝑖 × 𝑃𝑖 (3)

Where:

𝐼𝑖 = impact of the i‐th vulnerability

𝑃𝑖 = Probability of the i‐th vulnerability occurring

𝑛 = number of vulnerabilities

(3) calculates an overall risk score based on the individual

impact of vulnerabilities and their occurrence probability.

Cost‐Benefit Ratio of Security 〈CBRS) is:

CBRS =
𝐴𝐹𝑅𝑅

𝑆𝐿𝐼
 (4)

Where:

AFRR =Attack Frequency Reduction Rate (calculated from

the first equation) SLI =System Latency lncrease (calculated

from the second equation). (4) evaluates the cost‐benefit ratio

of implementing security measures in terms of attack

frequency reduction and performance impact. Secondly,

improper permissions configuration of the functions actually

permits privilege escalation attacks; hence, attackers can gain

unauthorized access to sensitive data. However, the frequency

of successful attacks is managed to be significantly reduced

after implementing security best practices like the principle of

least privilege and secure API gateways. Input validation

mechanisms are used to mitigate the risk of an injection

attack, and API security is improved by implementing and

using mechanisms for input validation. Functions were also

given the minimum necessary permissions with reduced

attack surfaces for privilege escalation. Regarding runtime

security, one would appreciate the fact that there were more

continuous monitoring and logging tools that provided real-

time anomaly detection- a sudden spike in traffic, an attempt

to access the system without authority, etc.

All of this was proactively monitored, and the threats had

potential in case of security breaches; it could never help the

threats escalate. Secondly, the encryption mechanism on the

data in transit and the one resting added an extra layer of

security. They ensured that even though one intends to leak

the information, the given information will not allow

unauthorized access. In addition, any performance analysis

revealed that the enforcement of those mechanisms didn't

degrade the system performance drastically. However, the

encryption and monitoring effects introduced some minor

latency. Yet, the added security achieved was tolerable since,

especially in enterprise environments, security matters are

considered. Adopting a multi-layered approach to security

helped mitigate vulnerabilities without diminishing the

Sanjeev Kumar / IJCTT, 72(10), 86-93, 2024

90

overall functionality and responsiveness of these serverless

applications. The results pointed out that the design and

deployment of FaaS-based applications must stay rigid on

security best practices. Therefore, concentration on function-

level security, as well as greater system-wide precautions,

would dramatically decrease the risk of breach occurrence in

this particular serverless environment.

Table 1. Vulnerabilities typically found in FaaS Architecture

Vulnerability
Impact

Level
Attack Vector

Injection

Attacks
High

Exploits insufficient input

validation in APIs

Privilege

Escalation
Critical

Escalates permissions

through misconfigured IAM

roles

Unauthorized

Access
High

Gains access through weak

authentication methods

Insecure API Medium

API without proper

validation and security

measures

Data Leakage Critical
Improper encryption of data

in transit or at rest

Table 1 enumerates a few common vulnerabilities

associated with FaaS architectures. Five key vulnerabilities

have been identified: injection attack, privilege escalation,

unauthorized access, insecure API, and data leakage. Every

vulnerability level ranges from medium to critical impact

level. The table also provides the exact attack vector for every

vulnerability- including the lack of input validation on the

input side for injection attacks and weak encryption for data

leakage. The cases of critical privilege escalations and data

leakage highlight proper access control in serverless

environments and appropriate encryption. This table

highlights focal points for improvement of security in FaaS

applications.

Table 2. Security best practices with effectiveness

Security Best

Practice

Effectiveness

(Reduced

Attack

Surface)

Description

Encryption High
Encrypts sensitive data

to prevent exposure

Least

Privilege

Access

Critical

Limits functions to

minimum permissions

required

API

Validation
High

Validates inputs to

prevent injection

attacks

Runtime

Monitoring
Medium

Monitors function

behavior to detect

anomalies

IAM Policy

Configuration
Critical

Configures access

policies to prevent

privilege escalation

Table 2 presents the five best security practices towards

reducing the risks in FaaS applications encryption, least

privilege access, API validation, runtime monitoring, and

IAM policy configuration. Their effectiveness ranks on the

level of reducing the attack surface from a medium to a critical

level. For each one of the security best practices, I give a

description of the function performed by it. For example,

encryption prevents access to sensitive information, and least

privilege access prevents escalations in permissions. This

table presents recommendations for security prioritization that

enhances the holistic security posture of a serverless system.

Fig. 2 Attack frequency before and after security implementations

Fig 2 illustrates the different types of attacks and their

different frequencies both before and after the implementation

of the security measures in serverless FaaS architectures.

Before the deployment of the security measures, attacks like

injection attacks, privilege escalation, and data leakage

frequency were extremely high. However, when security best

practices like API validation, least privilege, and encryption

are put into place, the frequency of the attack decreases

dramatically. The graph above indicates the effectiveness of

security as both types of attacks are shown to drastically

decrease; however, injection attacks decreased from 50

incidences to merely 5. Such a drop shows that having

proactive security strategies in serverless environments is very

valuable.

Fig. 3 System latency with and without security measures

Sanjeev Kumar / IJCTT, 72(10), 86-93, 2024

91

Figure 3. System latency without and with security:

encryption, API gateways, and monitoring As shown in Figure

3, the system latency with security is increased; however, the

increase is very small, which suggests that the

performance/security trade-off is acceptable. For instance,

using security measures like encryption incurs a latency

overhead on the order of 120 ms as compared to 70 ms without

security; the additional protection against attacks renders this

latency acceptable. The graph further shows that robust

security does not come at the expense of dramatic loss in

system performance in serverless applications.

6. Discussions
The data presented in this paper, in tables and figures,

explains crucial findings on vulnerabilities in FaaS

architectures and the effectiveness of security measures to

reduce these risks. There are five key critical vulnerabilities

that are commonly found in FaaS environments, as identified

in Table 1, such as injection attacks, privilege escalation,

unauthorized access, insecure APIs, and leakage. A practical

example of these security best practices can be seen in the

implementation of a Secure Serverless Claims Processing

System in the healthcare insurance industry. Healthcare

insurance companies manage sensitive personal and medical

information during claims processing, making security a

critical concern. Traditional infrastructure is often slow, prone

to misconfigurations, and expensive to scale. Leveraging a

serverless FaaS architecture enables healthcare insurers to

process claims in a more secure, scalable, and cost-effective

manner while adhering to regulatory standards like HIPAA.

The system employs an API Gateway to handle requests

securely and serverless functions to manage each step of the

claims lifecycle, such as intake, validation, fraud detection,

adjudication, and notifications. Sensitive data, including

personal health information (PHI), is encrypted both in transit

and at rest to ensure compliance. Least privilege access is

enforced to minimize risk, while APIs are secured with input

validation mechanisms and OAuth tokens. Real-time

monitoring detects any anomalies, and audit logs are

encrypted for compliance purposes. This serverless model

supports scalability, cost efficiency, and high-level security,

protecting sensitive data while ensuring regulatory

compliance. The tabulation emphasizes how severe these

vulnerabilities are since the impact levels range from medium

to critical. Injection attacks, for instance, emanate from the

absence of proper input validation and leave FaaS functions

appreciably vulnerable to code injections. Privilege escalation

and data leakage are two major vulnerabilities rated critical

that require better controls in terms of access and stronger

encryption practices. For instance, there is an emphasis on

vulnerable points in serverless applications due to security

measures influencing them. A corresponding set of security

best practices is provided in Table 2, proving the ability to

shrink the attack surface. At the high level of effectiveness are

those related to encryption and least privilege access, which

stand out as being highly advisable, while those associated

with API validation, runtime monitoring, and IAM policy

configuration come out at medium to high. This emphasizes

the multi-layered approach as the sound methodology that is

going to secure FaaS architectures, where encryption

maintains data integrity and least privilege access minimizes

the possibility of privilege escalation by limiting permissions

only to what is required for the functioning process of

functions. API validation has been very crucial in preventing

injection attacks since insecure APIs are among the most

common vulnerabilities in the serverless environment.

Figure 2 illustrates how often attacks occur before and

after a security feature or combination of features is added,

further depicting the criticality of the above security features.

Injection attacks, escalation, and unauthorized access are all

common attacks that frequently occur in the absence of

security measures, which in some cases reached a frequency

of up to 50. However, when such best practices as API

validation, least privilege access, and encryption were added,

such attacks saw their frequency drop enormously. For

example, injection attacks dropped to just 5 and privilege

escalation reduced to 10, making for a pretty big improvement

in the security posture of the system. This points out that

following best practices improves resilience against common

attack vectors fairly significantly for serverless applications.

It also relates to how proactive security measures with regard

to minimizing access and securing data flows are particularly

fundamental in a serverless context where functions are

stateless and frequently interact with third-party services.

Operational trade-offs the application of FaaS security

introduces are further insights from Figure 3, where system

latency with and without security measures has been plotted.

Intuitively, at least, the presence of security measures

encryption to API gateways and monitoring adds to system

latency. Evidently, latency due to encryption is at 120 ms

compared with 70 ms when no security measure is added.

However, it is not very significant given added security, and

the system still performs well within acceptance limits,

especially for sensitive applications wherein security will not

be compromised. Thus, it can be assumed that security may

incur some overhead operationally but does not significantly

impact the performance of serverless applications. The

marginal increase in latency is an acceptable trade-off for the

significant decrease in vulnerability to attacks. This further

enforces the broad principle of balancing security with

performance as a crucial determinant of which businesses will

deploy FaaS applications at scale.

In summary, the data present clear proof that serverless

FaaS architectures are not only highly efficient and scalable

but also vulnerable to certain critical security threats that need

a layered security approach. Results from Tables 1 and 2 and

Figures 2 and 3 present the importance of security best

practices that may include encryption, API validation, and

least privilege access, which can considerably reduce the

chances of attack. It also shows that, despite slight operational

Sanjeev Kumar / IJCTT, 72(10), 86-93, 2024

92

overheads by security implementations, the improvements in

security far outweigh the costs. Thus, this supports the

argument for incorporating the principles of security-first into

the design of serverless applications, making them both very

functional and safe against dynamic threats.

7. Conclusion
Coming from the analysis of vulnerabilities and security

practices in the architectures of FaaS it emerges with a big

critical need for a strong multi-layered security approach.

From the data from Table 1, the following present significant

vulnerabilities: injection attacks, privilege escalation, and

insecure APIs, which pose a considerable threat to serverless

environments. However, as indicated in Table 2 and Figure 2,

security best practices in the form of encryption, least

privilege access, API validation, and runtime monitoring show

much promise in effectively mitigating these risks. The

dramatic reductions in attack frequency following the

application of these measures are indicative of their success.

Further, security-performance trade-offs, as seen in Figure 3,

demonstrate that though adding latency, overhead from

encryption and API gateways are pretty low as opposed to

tremendous gains in the security of the system. Such outcomes

highlight security as an important concern to be addressed at

the design and deployment time of FaaS-based applications.

Organizations can greatly reduce their serverless

environment's attack surface while maintaining operational

efficiency by embracing best practices as part of an active

security strategy. The ultimate key for companies to enjoy the

servers' benefits of computing without compromising either

the integrity of data or the resilience of the system is securing

FaaS applications.

Limitations
Although it advances the body of knowledge on the

security challenges and best practices of FaaS, this study

certainly has some limitations. To start with, the empirical

testing carried out is one of the simulated environments, which

may not reflect the complexity of real-world serverless

deployments. Although controlled experiments are conducted,

the tests may not pick up on all the subtler security issues that

arise in large-scale, production-level applications involving

dynamic variables such as traffic loads and multi-tenant

environments, which can introduce their own set of risks.

Another limitation in scope is the scope of security best

practices implemented. While this paper merely concentrated

on some essential practices such as encryption, least privilege

access, and API security, the greater security measures were

yet not addressed: other particular compliance requirements

for serverless, say, and also more focused automated patch

management.

Future Scope

With the adoption of serverless computing on the rise,

security challenges continuously evolve and require

continuous innovation and research. In order to further

enhance studies in this area, several key domains need further

study to provide a proper understanding of serverless security.

The first area is doing more in-depth studies to explore real-

world, scale-deployed serverless applications. Such studies

would provide valuable insights into unique security concerns

that arise in multi-tenant, production-level environments,

traffic patterns, shared resources, and third-party

dependencies, which adds complexity to security

management. As cloud providers continue to innovate using

new tools and technologies tailored to serverless architectures,

they will keep emerging. This future work should research

how inventions in machine learning, self-healing systems, and

automatic threat detection could be combined with serverless

environments to provide better security monitoring and

improved response times. Another area of investigation for

future research will be the development of standards and

regulatory frameworks specific to serverless. With the

prevalence of serverless in industries that handle sensitive

data, such as healthcare and finance, organizations will have

to pay heightened attention to ensuring that their serverless

deployments comply with evolving legal and regulatory

requirements. Finally, future research should explore the long-

term cost implications of implementing security in serverless

architectures. This would provide an opportunity for direct

researchers to analyze and make trade-offs between security

measures and operational efficiency so that they can help

organizations find the right balance between security and

performance for their serverless applications.

References
[1] Gabriele Russo Russo, Valeria Cardellini, and Francesco Lo Presti, “Serverless Functions in the Cloud-Edge Continuum: Challenges and

Opportunities,” 2023 31st Euromicro International Conference on Parallel, Distributed and Network-Based Processing (PDP), Naples, Italy,

pp. 321-328, 2023. [CrossRef] [Google Scholar] [Publisher Link]

[2] Xing Li, Xue Leng, and Yan Chen, “Securing Serverless Computing: Challenges, Solutions, and Opportunities,” IEEE Network, vol. 37, no.

2, pp. 166-173, 2023. [CrossRef] [Google Scholar] [Publisher Link]

[3] Bader Alouffi et al., “A Systematic Literature Review on Cloud Computing Security: Threats and Mitigation Strategies,” IEEE Access, vol.

9, pp. 57792-57807, 2021. [CrossRef] [Google Scholar] [Publisher Link]

[4] Sanjaa Bold, and Batchimeg Sosorbaram, “Security and Privacy Concerns of the Internet of Things? (IoT) in IT and its Help in the Various

Sectors across the World,” International Journal of Computer Trends and Technology, vol. 68, no. 4, pp. 266-272, 2020. [CrossRef] [Google

Scholar] [Publisher Link]

https://doi.org/10.1109/PDP59025.2023.00056
https://scholar.google.co.in/scholar?hl=en&as_sdt=0%2C5&q=Serverless+Functions+in+the+Cloud-Edge+Continuum%3A+Challenges+and+Opportunities&btnG=
https://ieeexplore.ieee.org/document/10136957
https://doi.org/10.1109/MNET.005.2100335
https://scholar.google.co.in/scholar?hl=en&as_sdt=0%2C5&q=Securing+Serverless+Computing%3A+Challenges%2C+Solutions%2C+and+Opportunities&btnG=
https://ieeexplore.ieee.org/document/9933509
https://doi.org/10.1109/ACCESS.2021.3073203
https://scholar.google.co.in/scholar?hl=en&as_sdt=0%2C5&q=A+Systematic+Literature+Review+on+Cloud+Computing+Security%3A+Threats+and+Mitigation+Strategies&btnG=
https://ieeexplore.ieee.org/document/9404177
https://doi.org/10.14445/22312803/IJCTT-V68I4P142
https://scholar.google.co.in/scholar?hl=en&as_sdt=0%2C5&q=Security+and+Privacy+Concerns+of+the+Internet+of+Things%3F+%28IoT%29+in+IT+and+its+Help+in+the+Various+Sectors+across+the+World&btnG=
https://scholar.google.co.in/scholar?hl=en&as_sdt=0%2C5&q=Security+and+Privacy+Concerns+of+the+Internet+of+Things%3F+%28IoT%29+in+IT+and+its+Help+in+the+Various+Sectors+across+the+World&btnG=
https://www.ijcttjournal.org/archives/ijctt-v68i4p142

Sanjeev Kumar / IJCTT, 72(10), 86-93, 2024

93

[5] Marwa A. Elsayed, and Mohammad Zulkernine “PredictDeep: Security Analytics as a Service for Anomaly Detection and Prediction,” IEEE

Access, vol. 8, pp. 45184-45197, 2020. [CrossRef] [Google Scholar] [Publisher Link]

[6] Ben Wang et al., “Security-Aware Service Function Chaining and Embedding with Asymmetric Dedicated Protection,” IEEE Access, vol. 12,

pp. 53944-53957, 2024. [CrossRef] [Google Scholar] [Publisher Link]

[7] Qinzhe Wu, and Lizy K. John, “Performance of Java in Function-as-a-Service Computing,” Proceeding 2022 IEEE/ACM 15th International

Conference on Utility and Cloud Computing (UCC), Vancouver, WA, USA, pp. 261-266, 2022. [CrossRef] [Google Scholar] [Publisher Link]

[8] Hassan B. Hassan, Saman A. Barakat, and Qusay I. Sarhan, “Survey on Serverless Computing,” Journal of Cloud Computing, vol. 10, pp. 1-

29, 2021. [CrossRef] [Google Scholar] [Publisher Link]

[9] John Michener, “Security Issues with Functions as a Service,” IT Professional, vol. 22, no. 5, pp. 24-31, 2020. [CrossRef] [Google Scholar]

[Publisher Link]

[10] Eduard Marin, Diego Perino, and Roberto Di Pietro “Serverless Computing: A Security Perspective,” Journal of Cloud Computing, vol. 11,

no. 1, pp. 1-12, 2022. [CrossRef] [Google Scholar] [Publisher Link]

[11] Johannes Manner et al., “Cold Start Influencing Factors in Function as a Service,” 2018 IEEE/ACM International Conference on Utility and

Cloud Computing Companion (UCC Companion), Zurich, Switzerland, pp. 181-188, 2018. [CrossRef] [Google Scholar] [Publisher Link]

[12] Paweł Żuk, and Krzysztof Rzadca, “Scheduling Methods to Reduce Response Latency of Function as a Service,” 2020 IEEE 32nd International

Symposium on Computer Architecture and High-Performance Computing (SBAC-PAD), Porto, Portugal, pp. 132-140, 2020. [CrossRef]

[Google Scholar] [Publisher Link]

https://doi.org/10.1109/ACCESS.2020.2977325
https://scholar.google.co.in/scholar?hl=en&as_sdt=0%2C5&q=PredictDeep%3A+Security+Analytics+as+a+Service+for+Anomaly+Detection+and+Prediction&btnG=
https://ieeexplore.ieee.org/document/9019695
https://doi.org/10.1109/ACCESS.2024.3387083
https://scholar.google.co.in/scholar?hl=en&as_sdt=0%2C5&q=Security-Aware+Service+Function+Chaining+and+Embedding+With+Asymmetric+Dedicated+Protection&btnG=
https://ieeexplore.ieee.org/document/10496094
https://doi.org/10.1109/UCC56403.2022.00047
https://scholar.google.com/scholar?cluster=14445290479761436428&hl=en&as_sdt=0,5
https://ieeexplore.ieee.org/document/10061795
https://doi.org/10.1186/s13677-021-00253-7
https://scholar.google.co.in/scholar?hl=en&as_sdt=0%2C5&q=Survey+on+serverless+computing&btnG=
https://journalofcloudcomputing.springeropen.com/articles/10.1186/s13677-021-00253-7
https://doi.org/10.1109/MITP.2019.2930049
https://scholar.google.co.in/scholar?hl=en&as_sdt=0%2C5&q=John+Michener%2C+Security+Issues+With+Functions+as+a+Service&btnG=
https://ieeexplore.ieee.org/document/9194431
https://doi.org/10.1186/s13677-022-00347-w
https://scholar.google.co.in/scholar?hl=en&as_sdt=0%2C5&q=Serverless+computing%3A+a+security+perspective&btnG=
https://journalofcloudcomputing.springeropen.com/articles/10.1186/s13677-022-00347-w
https://doi.org/10.1109/UCC-Companion.2018.00054
https://scholar.google.com/scholar?cluster=15671168397702054947&hl=en&as_sdt=0,5
https://ieeexplore.ieee.org/document/8605777
https://doi.org/10.1109/SBAC-PAD49847.2020.00028
https://scholar.google.com/scholar?cluster=7715088270980864842&hl=en&as_sdt=0,5
https://ieeexplore.ieee.org/document/9235070

